MATHEMATICS APPLICATIONS

MAWA Semester 2 (Units 3 & 4) Examination 2017

Calculator-free

Marking Key

Section One: Calculator-free

1

٦

Question 1 (a)

Solution	
$T_2 = 2, T_3 = 0.5 \times 2 - 8 = -7$	
Marking key/mathematical behaviours	Marks
identifies second term	1
 determines an expression for the third term 	1
calculates third term	1

Question 1 (b)

Solution	
$T_n = -4n + 9, n = 50$	
Marking key/mathematical behaviours	Marks
 deduces and expression for the nth term 	1
• determines -4 <i>n</i> = -200	1
• determines $n = 50$	1

Question 2 (a)

Solution	
Each edge represents a connection between stations	
Marking key/mathematical behaviours	Marks
identifies representation of an edge	1

Question 2 (b)

Solution	
CMEKPNRZWHT or CHTRZWEMNPK	
Marking key/mathematical behaviours	Marks
Identifies a route which	
 starts at C and ends at a different node 	1
 travels through each node once only 	1
 has no repeated edges 	1

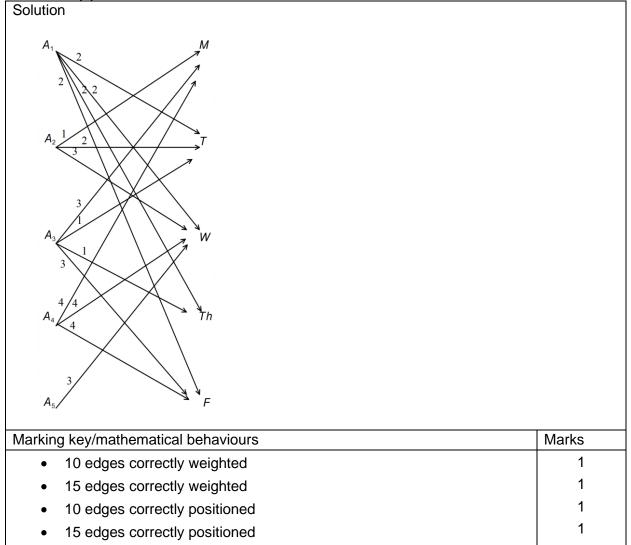
Question 2 (c)

Solution	
The graph can be drawn in 2 dimensions without any edges crossing	
Marking key/mathematical behaviours	Marks
describes planarity	1

Question 2 (d)

S	olution		
<i>v</i> :	= 11, f = 11, e = 20.		
v	+ f - e = 2		
M	arking key/mathematical behaviours	Marks	
	 determines values for the numbers of faces, edges and vertices 	1	
	• expresses the relationship between <i>e</i> , <i>f</i> and <i>v</i>	1	

Question 2 (e)


Solution

(i) Louise would need to come back through R or H to reach T and Z and one of the conditions is to visit each station only once.

(ii) NEM, NEW

Marking key/mathematical behaviours	Marks
 describes inability to meet a necessary condition 	1
 identifies alternate incorrect starting route 	1

Question 3 (a)

Question 3 (b)	
Solution	
$\begin{bmatrix} 3 & 0 & 4 & 0 \\ 1 & 2 & 3 & 2 \\ 4 & 3 & 4 & 5 \\ 5 & 2 & 1 & 2 \end{bmatrix} => \begin{bmatrix} 2 & 5 & 1 & 5 \\ 4 & 3 & 2 & 3 \\ 1 & 2 & 1 & 0 \\ 0 & 3 & 4 & 3 \end{bmatrix} => \begin{bmatrix} 1 & 4 & 0 & 4 \\ 2 & 1 & 0 & 1 \\ 1 & 2 & 1 & 0 \\ 0 & 3 & 4 & 3 \end{bmatrix}$	
$\begin{bmatrix} 1 & 3 & 0 & 4 \\ 2 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0 \\ \hline 0 & 2 & 4 & 3 \end{bmatrix}$	
Maximum number of hours is 16	
V ₁ comes on Wednesday	
V ₂ comes on Tuesday	
V ₃ comes on Thursday V ₄ comes on Monday	
Marking key/mathematical behaviours	Marks
subtracts every number from the maximum number	1
reduces two rows	1
reduces further two rows	1
 identifies maximum number of hours 	1
describes allocation of volunteers	1

Question 4 (a)

Solution	
B. The weekly allowance is \$1100 whereas it is \$1000 in both A and	IC.
Marking key/mathematical behaviours	Marks
identifies correct rule	1
explains choice of rule	1

Question 4 (b)

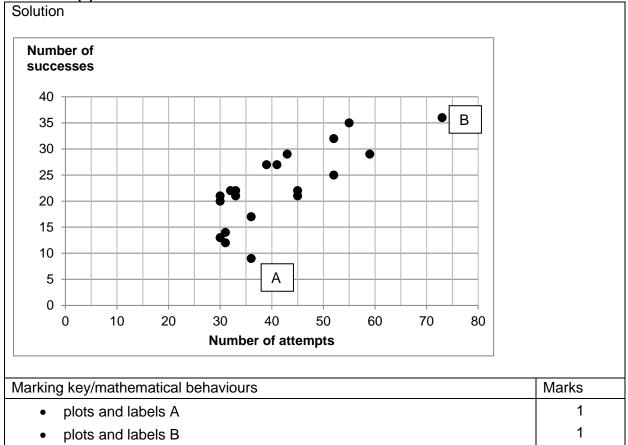
Solution	
C. 1.10 as the ratio represents 110% so a 10% increase each year.	
Marking key/mathematical behaviours	Marks
identifies correct rule	1
explains choice of rule	1

Question 4 (c)

Solution	
----------	--

Amount = 1.05 x 500 000 - 1000 x 52 = 500 000 + 25000 - 52000 = \$473 000	
Marking key/mathematical behaviours	Marks
determines 5% of 500 000	1
calculates value after one year	1

Question 4 (d)


Solution

Rule C

The payout is the same each year as A but the rate of growth is higher than in A. In B the growth is 8% per year which is lower than in C and the payout is higher by \$100. This mean the investment is growing at a slower rate and reducing by more money each year.

Marking key/mathematical behaviours		Marks
•	compares the influence of the rates for A, B, C	1
•	identifies the significance of the different amounts transferred	1
•	concludes that C is the best option	1

Question 5 (a)

Question 5 (b)

Solution	
Number of attempts	
Marking key/mathematical behaviours	
identifies explanatory variable	1

Question 5 (c)(i)(ii)

Solution

(i) You cannot get a success of 2.3 with 0 attempts because there are no successes possible OR a success cannot be fractional.

(ii) 5. The rate is 0.5 successes per attempt and 0.5 of 10 is 5	
Marking key/mathematical behaviours	
interprets the vertical intercept	1
 determines change in the number of successes 	1
interprets the gradient	1

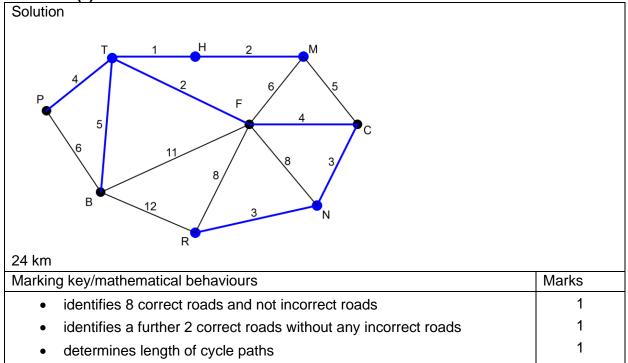
Question 5 (d)

Solution

ABOVE

For the same number of attempts their number of successes is greater so they would be above the same number of attempts as a less successful player

Marking key/mathematical behaviours	
interprets scatter plot	1
explains positioning on scatter plot	1


Question 5 (e)

Solution		
INCREASE		
There is less variation as only the least successful players are left		
Marking key/mathematical behaviours		
Marking Key/marionation benavious	Marks	
concludes a lower correlation coefficient	1	

Question 5 (f)

Solution	
С	
Marking key/mathematical behaviours	
 identifies most likely residual plot 	1

Question 6 (a)

Question 6 (b)

Solution	
PB, BR, BF, RF, FB, FN, BC	
Marking key/mathematical behaviours	
identifies all roads not required	1

Question 6 (c)

